Influenza Virus M2 Protein Mediates ESCRT-Independent Membrane Scission

نویسندگان

  • Jeremy S. Rossman
  • Xianghong Jing
  • George P. Leser
  • Robert A. Lamb
چکیده

Many viruses utilize host ESCRT proteins for budding; however, influenza virus budding is thought to be ESCRT-independent. In this study we have found a role for the influenza virus M2 proton-selective ion channel protein in mediating virus budding. We observed that a highly conserved amphipathic helix located within the M2 cytoplasmic tail mediates a cholesterol-dependent alteration in membrane curvature. The 17 amino acid amphipathic helix is sufficient for budding into giant unilamellar vesicles, and mutation of this sequence inhibited budding of transfected M2 protein in vivo. We show that M2 localizes to the neck of budding virions and that mutation of the M2 amphipathic helix results in failure of the virus to undergo membrane scission and virion release. These data suggest that M2 mediates the final steps of budding for influenza viruses, bypassing the need for host ESCRT proteins.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Budding of filamentous and non-filamentous influenza A virus occurs via a VPS4 and VPS28-independent pathway.

The mechanism of membrane scission during influenza A virus budding has been the subject of controversy. We confirm that influenza M1 binds VPS28, a subunit of the ESCRT-1 complex. However, confocal microscopy of infected cells showed no marked colocalisation between M1 and VPS28 or VPS4 ESCRT proteins, or relocalisation of the cellular proteins. Trafficking of HA and M1 appeared normal when en...

متن کامل

Investigation of the curvature induction and membrane localization of the influenza virus M2 protein using static and off-magic-angle spinning solid-state nuclear magnetic resonance of oriented bicelles.

A wide variety of membrane proteins induce membrane curvature for function; thus, it is important to develop new methods to simultaneously determine membrane curvature and protein binding sites in membranes with multiple curvatures. We introduce solid-state nuclear magnetic resonance (NMR) methods based on magnetically oriented bicelles and off-magic-angle spinning (OMAS) to measure membrane cu...

متن کامل

Influenza virus A M2 protein generates negative Gaussian membrane curvature necessary for budding and scission.

The M2 protein is a multifunctional protein, which plays several roles in the replication cycle of the influenza A virus. Here we focus on its ability to promote budding of the mature virus from the cell surface. Using high-resolution small-angle X-ray scattering we show that M2 can restructure lipid membranes into bicontinuous cubic phases which are rich in negative Gaussian curvature (NGC). T...

متن کامل

Un-“ESCRT”-ed Budding

In their recent publication, Rossman et al. describe how the inherent budding capability of its M2 protein allows influenza A virus to bypass recruitment of the cellular ESCRT machinery enlisted by several other enveloped RNA and DNA viruses, including HIV, Ebola, rabies, herpes simplex type 1 and hepatitis B. Studies from the same laboratory and other laboratories indicate that budding of plas...

متن کامل

NMR determination of protein partitioning into membrane domains with different curvatures and application to the influenza M2 peptide.

The M2 protein of the influenza A virus acts both as a drug-sensitive proton channel and mediates virus budding through membrane scission. The segment responsible for causing membrane curvature is an amphipathic helix in the cytoplasmic domain of the protein. Here, we use (31)P and (13)C solid-state NMR to examine M2-induced membrane curvature. M2(22-46), which includes only the transmembrane (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cell

دوره 142  شماره 

صفحات  -

تاریخ انتشار 2010